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Chapter 1

Introduction

Over the past fifteen years, interest has continued to grow in the
study of gearing technology. There have been increasing demands for
improved power transmission. The major areas for improving transmission
systems are in higher power-to-weight ratios, better control of
transmission vibration, reduced noise, increased reliability, and longer
life. To obtain these improvements, it is necessary to have a thorough
understanding of the stresses, the dynamic loading, the contact forces, the
vibration and the noise characteristics, the lubrication phenomena and the
fatique life. For example, gear lubrication technology involves the Hertz
contact stress, the elastohydrodynamic film thickness, and the flash tem-
perature. These are the major factors in tooth surface scuffing. The
understanding of these phenomena requires a knowledge of the relative cur-
vature of the contacting tooth profiles and of their relative velocities.
This is a problem of the tooth geometry. This problem is addressed in this

report.

Specifically, the report is concerned with a computer analysis of the
geometry of gears. It presents a new modeling method to simulate the gear
manufacturing machining processes, such as gear hobbing, and straight and
spiral bevel gear machining. The method is based on the work in reference

[1]J*, allowing for both standard and nonstandard gear tooth modelling.

*Numbers appearing in square brackets refer to references at the end

of the report.




Further, it discusses the procedures for the cutter design. The kinematic
relations for the tooth surfaces of spur and bevel gears are presented.
The results and procedures are expected to form a basis for improved gear

design.

The balance of the report is divided into three chapters. 1In the
following chapter a model of the gear hobbing process is presented. A gear
tooth profile generation theory is also derived. The development of the
nonstandard tooth profiles, and the development of reciprocal conjugate
gear tooth cutter is discussed. In the next chapter the procedures are
generalized to three-dimensions. The basic theory of the bevel gear and
its manufacturing method are briefly discussed. The machining mechanisms
for straight and spiral bevel gears are modeled. The tooth surface
equations of the straight and spiral bevel gear are derived in curvilinear
parametric form. The final chapter presents a summary of the methods. It

discusses applications and suggestions for the future research.




Chapter 2

One Parameter Enveloping and Gear Tooth Profile Generation

2.1 Introduction

Recent advances in computer graphics and computer aided design present
an opportunity for developing new procedures for optimizing gear tooth
geometry. In this chapter, a procedure for generating tooth profiles is
presented. It employs the envelope of a one-parameter family curves. The
focus is upon 2-dimension standard and nonstandard gear teeth, but the same
approach may be applied with 3-dimension gear teeth, such as with straight,

and spiral bevel gears.

The basic concepts underlying the method are readily seen by con-
sidering the hob cutter process for fabricating spur gear teeth. This pro-
cess is based upon the concept of a reciprocating rack cutter with straight
teeth moving across a gear blank as depicted in Figure 2.1.1.

Geometrically this process may be viewed as a series of inclined line
segments intersecting the circular gear blank, with the envelope of the

Tine segments forming the tooth profile as shown in Figure 2.1.2 [2].

A second way of viewing this process is to imagine a perfectly plastic
wheel rolling over a "step" or obstacle in the form of a rack tooth as
shown in Figure 2.1.3. The impression (or "footprint") forms the gear
tooth profile. It is well known that this tooth profile is an involute of
a circle. That is, the envelope of the line segments on the gear blank is

an involute of a circle.

Recall that the involute of a circle may be viewed as the locus of the

end of a cord being unwrapped around a circle. If the circle has infinite
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Figure 2.1.3. Wheel Rolling Over a Rack Tooth Forming the Tooth Profile




radius, the involute will be straight, as with the rack tooth.

2.2 Envelope of a Family of Curves

Consider a plane curve C as shown in Figure 2.2.1. Ana}ytica]]y C may
be represented by an equation of the form y = f(x). Suppose in this func-
tional description we introduce a parameter t defining a family of similar
curves. Suppose further that as t changes the orientation of the curves
change and that they intersect each other as in the figure. The curve E,

tangent to the intersection curves is then the envelope of the family [3].

It is relatively easy to obtain an analytical expression for the enve-
lope. To see this, let the representation.of the family of curves be y =
f(x, t) or F(x, y, t) = 0 where t is the motion parameter. If t is
replaced by t + At where At is a small increment in t, the expression
F(x, y, t + At) = 0 also represents a member of the family of curves.
Hence, the "difference quotient" [F(x, y, t + At) - F(x, y, t)1/at = 0 is a
member of the family as well. Therefore, by a limiting process, a second
expression for members of the family of the curves is 3F(x, y, t)/5t = 0.
By eliminating t between F and 9F/3t we obtain an equation of the form
G(x, y) = 0. G(x, y) thus represents the Tocus of points common to F = 0
and 9F/3t = 0. That is, G(x, y) represents the points on the envelope E
and is thus the desired analytical representation of E. (See Appendix A

for additional details.)

To illustrate these ideas, consider the envelope of a family of lines,

each a distance r from a fixed point 0 as depicted in Figure 2.2.2. Let ¢
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Figure 2.2.1. A Family of Intersecting Curve
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Figure 2.2.2. A Family of Line Equidistanf from a Point




be the inclination angle of a typical member L of the family and let ¢ be
the inclination angle of a typical member L of the family and let 6 be the
inclination of the line normal to L and passing through O as shown. The

equation of L might be written as:
y - yp = mx - xp) (2.2.1)

where m is the slope of L and (xp, yp) are the coordinates of P, the point
of intersection of L and its normal line through 0. But, m = tan¢ and tan¢
= -cos0. Also Xp and yp may be expressed as r cos6 and r sin6 . Hence,

the equation of L might be rewritten as:

y - rsind = (-cot0)(x - rcoso) (2.2.2)
or as:

ysind + xcos6 - r =0 = F(x, y, 9) (2.2.3)

Equation (2.2.3) may be considered as defining the family of the lines
with 6 being the family parameter. By differentiating with respect to 6, we

have

3

E%; = ycose - xsinp =0 (2.2.4)

Finally, the equation of the envelope may be obtained by solving

equations (2.2.3) and (2.2.4) for x and y, leading to the expression:
X =rcos6 and y = rsinse (2.2.5)
or by eliminating 6 as:

X2 4 y2 = y2 (2.2.6)



The envelope, as expected, is a circle, with the family of lines being

tangent to the circle.

2.3 Development of Involute Spur Gear Teeth

A similar procedure can be used to examine a spur gear tooth profile.
Consider again Figure 2.1.3 where the involute profile is generated by the
step's impression on the plastic wheel. To describe the impression we need
to find the envelope, in the wheel, of the line segments representing the
sides of the step. To this end, consider Figure 2.3.1 where L is a step
side, line segment. L is inclined at an angle ¢ to the X-axis and it
intersects the X axis at a distance x, from the origin. The wheel W has a
radius r, center 0, and roll angle 6. X and Y are coordinate axes fixed in
W with origin at 0. The objective is then to express the envelope of L in

the X-? system.

Let (x, y) and (x, y) be coordinates of a typical point P on L, rela-
tive to the X-Y and X-Y systems. Then it is shown that x and y are related

with X and y by the expression:

X = r0+ Xcosd + ysino (2.3.1)
and
y =r - Xsin® + ycoso (2.3.2)
The equation of L is
y = (x - xg)tan¢ (2.3.3)
Using equations (2.3.1) and (2.3.2), L may be described in terms of X
and y as:

10
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y(cos0 - tan¢ sino) - X(sino + tan¢ cose)
tr+(xg-r)tang =0 = F(X, ¥, 0) (2.3.4)

Equation (2.3.4), like equation (2.2.3) can be considered as
describing a family of lines relative to X-Y system with 6 being the para-

meter. Hence, by differentiating equation (2.3.4) with respect to 9, we

have:

oF AL
55 = 0 = y(sino + tan¢ coso)

+ x(cose - tand sin®) + rtand (2.3.5)

By solving equations (2.3.4) and (2.3.5) for x and }, we obtain:

rsing + (xg - re)sing cos¢(sine + tan¢ cose)

> >
I

= -rcos8 - (xg - ro)sing cos¢(coso6 - tang sine) (2.3.6)

>
|

Equations (2.3.6) are a pair of parametric equations representing the
envelope of L relative to W. Therefore, equations (2.3.6) describe the

tooth profile impression created by the cutter step.

Let P be a typical point of the envelope E (See Figure 2.3.2.). The

radius of curvature p of E at P may be expressed as [4, 5].

A2 A~
(x5 + y§)3/2

p = (2.3.7)

Yook = %o0 ¥y
where the subscript o indicates partial differentiation with respect to 6.
By substituting from equations (2.3.6) into (2.3.7), p takes the relatively

simple form:

} 1 (2.3.8)

[rcos¢ + (xO - ro)sing]
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The center of curvature C of E at P is located on a line perpendicular
to E at a distance p from E. Hence, C may be located relative to the wheel
center O by the vector p+ oN, where p locates P relative to O and N is a
unit vector perpendicular to E as shown in Figure 3.3.2. Recall that a

unit vector T tangent to E at P may be expressed as [5]:

0
T (2.3.9)
Hence, N may be written as:

~ o ~ . A2 "2
= (Y1 + X3J) /%y + yo)% (2.3.10)

tZ
i

Let p. be the vector from 0 to C. Then, using equation (2.3.7), Pc

may be written as:

Pc =P+ PN = Xci + i

0

", A, " . ~ - A2 4\2 A A A A
Xi+ ¥+ (yyd + X, DO+ y I/ X Y, = YXao) (2.3.11)

where(xc,_vc)are the coordinates of C relative to the X-Y system, fixed in
W. By substituting from equations (2.3.6) and by performing the indicated
differentiations, it is seen that the ratio (X, + ¥,)/(X¥y, = ¥o%yq) 15

unity and that Xx. and y. are:

?

- ~ Q . .
Xg = x - = - r(coso - tan¢ sino)sing coS¢

and
}C =y + X s op(sino + tang cosp)sing €OS¢ (2.3.12)

X
—
=

The locus of the centers of curvature can be seen to be a circle.

That is, from equations (3.3.12), we find that

13
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2+ 32 = r2sin2s (2.3.13)

By recalling the construction of an involute as the locus of the end
points of an unwrapping cord around a circle, we see that the cord is per-
pendicular to the involute and its unwrapped length is the radius of cur-
vature of the involute. Hence, the centers of curvature of the envelope
are located on the generating circle, also called the "evolute."
Therefore, the envelope E.of the step of Figure 2.3.1 is the involute of

the circle of equation (2.3.6).

Recall that for a spur gear the circle generating the involute tooth
profile is called the base circle. Recall also that if meshing spur gears
are viewed as rolling cylinders, the cylinder cross sections define the
pitch circles. Then, if the pressure angle is defined as the angle between
the radial line and the tooth profile at the pitch circle, it is readily

seen [6] that the ratio of the radii of the base and pitch circle is

B

F— = CosY (2.3.14)
P
In the above analysis, the wheel profile is the pitch circle, the
pressure angle is the compliment of ¢, (that is, cosy = sing), and the
generating circle is the locus of the centers of curvature of the involute
(the evolute). Then, from equation (2.3.13), the base circle radius if
rsin¢(=rcosy) where r is the pitch circle radius. Therefore, the ratio of

the radii of the base and pitch circles is simply sin¢, or coSy--a result

consistent with equation (2.3.14).

To demonstrate these results, the line segments generating the enve-

lope were plotted for r = 1, ¢ = 70°, x5 = 0.70021, and 0 s & = 720.
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Figure 2.3.3 shows the results for 9.6 deg. increments in 6. Figure 2.3.4
shows a computer drawn graph of equation (2.3.6). The "natural" envelope
in Figure 2.3.3 is thus seen to be the same as the "analytical" envelope of
Figure 2.3.4. Figure 2.3.5 shows a computer generated drawing of the base
circle, the pitch circle, and an involute curve forming a portion of a

tooth profile.

These results may be summarized as follows:
1. The envelope of an inclined line on a rolling wheel is an involute.
2. The evolute of an envelope is a circle.

3. The rolling wheel is the pitch circle of a spur gear.

4, The evolute is the base circle.

5. Inclination angle is the pressure angle.

A major application of this procedure is with the computer aided
design and analysis of nonstandard tooth profiles. For example, suppose
that the cutter profile is not straight, but instead has a profile defined
by the expression y = f(x) (instead of y = (x - xg) tan¢ as equation
(2.3.3)). Then, in terms of the X-Y coordinate system of the gear blank,

the resulting tooth profile is determined from the expressions:

r - xsin6 + ycoso - f =0 (2.3.15)
and

-XCO0S® - ysino - (r - xsin6 + ycos 0)f! = 0 : (2.3.16)

where from equation (2.3.5) the argument of f is (r + xcoso6 + ysino) and
where f' is the derivative of f with respect to its argument. When

equations (2.3.15) and (2.3.16) are solved for x and y in terms of 6, they

15



Figure 2.3.3., Computer Drawn Cutting Lines at 9.6° Intervals for
$=70,r=1, Xo = 0.70021, and 0 < & < 720.
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Figure 2.3.4. Graph of Equation 3.3.6.
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Tooth Profile

Pitch Circle

S

Base circle (evolute)

Figure 2.3.5. Computer Drawing of Base Circle, Pitch Circle, and Involute
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form a pair of parametric equations for the envelope of the cutter profile,
which is the tooth profile. The following section contains an example of a

nonstandard tooth profile generated by this procedure.

A second major application of the procedure is with the design and
analysis of bevel, spiral bevel, and hypoid gears. In this case, the pro-
cedures are generalized to three dimensions, and the cutter surface creates
a family of surfaces whose envelope in the gear blank is the tooth surface.
When these procedures are developed numerically, the resulting represen-
tation of the tooth surface appears in a form suitable for kinematic,
stress, and life analysis. In Chapter 3 these ideas are discussed by exa-

mining the envelope of a conical cutter surface onto a mating rolling cone.

2.4 Circular Arc As A Basic Rack

As noted in Section 2.3, a non-straight basic-rack profile can be used
to form a nonstandard gear tooth profile. This is demonstrated in Figure
2.4.1 where an arc of a circle is used as a cutter. In the figure, the
coordiante axes X and Y are fixed, B is the distance along the X axis, and
D is the distance along the Y axis to the circle center. The plastic wheel
W has a radius r, center 6, and roll angle 0. X and ¥ are coordinate axes
fixed in W. The initial position of W is at a distance x5 from the origin

of X-Y coordinates.

Let (x, y) and (X, y) be coordinates of a typical point P on C, rela-
tive to the X-Y and X-Y systems. Then it is seen that X and y are related

to x and y by the expressions:

19




Figure 2.4.1.

Circular Arc as a Basic Rack
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(ro - xgo) + Xcos0 + ysin
and

y =r - X sin0 + y cosl (2.4.1)

A point P (x, y) on the arc C may be located from the expession:

x =B - VA2 - (D+y)2 (2.4.2)
where A is the radius of the circle.

By differentiating equation (2.4.2) with respect to y, we obtain:

Qﬁ = tan¢ = (0_+ y)

dy /Al - (D + y)2

(2.4.3)

Using equations (2.4.2) and (2.4.3), C may be expressed in terms of X
and y as:

(ro - x, - B) + X cos0 + y sing +
(2.4.4)

//A2 -(D+r-Xxsino+y cose)2 =0 =F(X, ¥, 6)

Equation (2.3.4), like equation (3.2.3) can be considered as
describing a family of lines relatve to the X-Y system with & being the
parameter. Hence, by differentiating equation (2.4.4) with respect to o,

we have:

— =0 =r - xsin0 + ycoso0

(D+ r - xsin +ycos )(x cos +ysin)_ Ov
JAC - (D+r- X sing +y cose)?

(2.4.5)

21



Equations (2.4.4) and (2.4.5) form a simultaneous system of nonlinear
equations representing the envelope of the cutter relative to the gear
blank. The solution describes the tooth profile impression created by the

cutter.

To illustrate the use of equation (3.4.5), the envelope of the cir-
cular step on the roller was plotted for x4 = 7.131 in, A = 5. in, D =
2.1131 in, and r = 20. in. Figure 2.4.2 shows the results. The other
curve shown in the figure was plotted using Buckingham's equation [7]. The
other curve shown in the figure was plotted using Buckingham's equation
[7]. The two curves are identical if they are superimposed. The circular

arc shown in the figure represents the roller.

2.5 Tooth Profile Generated by a Straight Cutter on the Wheel

Another procedure for generating involute gears is to use a pinion-
shaped cutter in a shaping or planing machine. Both the cutter and gear
blank are revolved as gears between each stroke of the machine. This
method is extensively used in the automotive industries for finishing gears
which have been roughed out on a gear milling or hobbing machine [2]. This

section describes the simulation of this shaping process.

Consider Figure 2.5.1. Let L be a line segment step side to simulate
the cutter. L is inclined at an angle ¢ to the radial line OE, and point E
on the wheel is located by an angle «. The wheel W has a radius R, center
0, and is fixed. X and Y are coordinate axes fixed in W with origin at O.
The roller G has a radius r, center 6, and roll angle 5. X and v are coor-

dinate axes fixed in G with origin at 0. The objective is then to express

the envelope of L in the X-¥ system.

22
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The roller rolls on the wheel without slipping. When the roller rolls
from position A to position B, it rotates through the angle 8. Angle 6 and

are then related by the expression:
RO = r‘é (2.5.1)

Let (x, y) and (X, ¥) be coordinates of a typical point P on L, relative to
the X-Y and X-Y systems. Then it is shown that x and § are related to x

and y by the expressions:

(R + r)sin® + xcos(0 + 0) + ysin(6 + 8)

>
1]

and

(R + r)cos0 - Xsin(e + 0) + ycos(6 + 8) (2.5.2)

<
it

The equation of L is:
tan(a - ¢)(x - Rcos®) = (y - Rsina) (2.5.3)

Where tan(o - ¢) is the slope of L. (Rcosa, Rsina) are the coor-

dinates of E, the point of intersection of L and the wheel.

Using equations (2.5.1) and (2.5.2), L may be expressed in terms of X
and y as:
%[tan(a - ¢)cos(o + 0) + sin(o + 0)]
+ y[tan(a - ¢)sin(o + 0) - cos(o + )]
+ tan(a - ¢)[(R + r)sin(0) - Rcosal

- (R + r)cos(e) +Rsina = 0 (2.5.4)

By substituting (2.5.1) into (2.5.4), we have:

25




Y‘+RA)

x{tan(a - ¢)cos(t—£—5)0 + sin(——u——) ]

+ y[tan@ - tb)sin(r—E—B')é - COS(LE'B)é]
+ tan(a - ¢ JL(R + r)sin(%%?é - coso]
- (R + r)cos()8 + Rsina = 0 = f(%, §, 8) (2.5.5)

Equation (2.5.5) may be considered as a one-parameter family lines and 8
is the parameter. By differentiating equation (2.5.50 with respect to 8.

We have:

A

of (X, ¥, 0)

30
- x[tan(a - qb)sin(R E )6 + cos(R ; L8]
+ y[tan(a - ¢)cos(R E T8+ sin(R ir )81
+ rtan(o - ¢)cos(%%)6 + Rsin(%%)ﬁ (2.5.6)

Solving equations (2.5.5) and (2.5.6) for X and y, we obtain:

R+ r (»

X = sin(a - ¢)[rsind - Rsin(%%)ﬁ cos (—p—)61
+ Rsin(a - ¢)cos(a - ¢){cos(R ; ar )0 - sinfa - (R E r )81}

R+ r (a

Rt r )& - Rsina sin( L8]

R

+ cos(a - ¢)2[rsing + Rcos(%%)é sin(
(2.5.7)

and

~ . " . A ~ . R + ~
y = sinZ(a - ¢){-rcosd - Rs1n(%%)e sin(-B—%—r)e + Reosa sin(— . )61

+ Rsin(e - 9)cos(a - 0){sinBrBl)d - costa - (R8I}

~ ~ ~ + ~
+ cos(a - ¢)2[rcosd - Rcos(%%)o cos(B-E—ﬁ—)e + Rsina COS(B—R—lL)e]

Equations (2.5.7) are a pair of parametric equations with 0 being the para-

meter representing the envelope of L relative to G. As described in

26
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Figure 2.5.2. Tooth Profile of Equation (2.5.7) (R=10, r=2)
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Figure 2.5.3. Tooth Profile of Equation (2.5.7) (R=10, r=10)
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Section 3.3, equations (2.5.7) describe the tooth profile impression by the

cutter step.

To illustrate the use of equation (3.5.7), the envelope of the
straight step on the roller was plotted for ¢ = 20°. Figure 2.5.2 shows
the results for R = 10., r = 2., and -25. < 6 < 95.. The circle shown in
the figure represents the roller. Figure 2.5.3 shows the envelope for R =
10, r = 10, and -45. S 8 S 65. There is a cusp shown inside the roller.

However, only one branch of the envelope is used as the gear tooth.

2.6 Reciprocal Conjugate Gear Tooth and Cutter Profile

In the previous sections, we discussed the analytic expression of the
gear tooth profile formed by a given cutter form. It is also of interest
to develop an expression for the cutter profile itself for a desired tooth

form. This is the "“inverse problem".

Consider again a wheel rolling over a step as shown in Figure 2.3.1.

Assume the cutter profile is of the form
y = f(x) (2.6.1)
Substituting equations (2.3.1) and (2.3.2) into (2.6.1), we have:

r - Xsing + ycos® - f(re + Xxcosé + ysing)

F(is 9’ 8) =0 (2.6.2)

a

ag Xcos6 - ysin® - (r - xsine + ycose)f' = 0 (2.6.3)
If the cutter's form is known, then by solving equations (2.6.2) and
(2.6.3) simultaneously for x and y as function of 6 we obtain the para-

metric equation of the envelope as:

29



x(0)

>
I

y = y() (2.6.4)
If the cutter's form is unknown, then equations (2.6.2) and (2.6.3) lead
to:

df -Xc0s6 - ysineg
X ©F - Xsino * §cose (2.6.5)

Suppose the given envelope is in parametric form as in equation
(2.6.4). Then substituting into equation (3.6.5) leads to the cutter's

profile.
[f the given envelope profile is in the form of
y = g(x) (2.6.6)

then substituting equations (2.3.1), (2.3.2) and (2.6.5), leads to:

x = ¥1(k, 8) (2.6.7)
f(x) = ¥o(x, 0) (2.6.8)
{g; = ¥3(%, 0) (2.6.9)

Solving equations (2.6.7) and (2.5.8), we can obtain the solution for
x and 0 in terms of x and f(x). Then substituting the results into

equation (2.6.9) produces the differential equation for f(x).

To illustrate this procedure, consider equation (2.3.6) in section 2.3
which is the involute profile of the straight cutter. The tooth profile is

in the parametric form. Therefore, by substituting equation (2.3.6) into

(2.6.5), we have:
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-3; = tan¢ | (2.6.10)

Integrating equation (2.6.10), it is clear that y = f(x) is a straight line

as:
f(x) = xtan¢ + constant (2.6.11)

This is the cutter profile as described in equation (2.3.3).
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Chapter 3

Bevel Gear Tooth Surface Generation

3.1 Introduction

Recently, there has been increased interest in the kinematics, stress
analysis, dynamic loading, noise, vibration, wear and life of bevel gears--
especially spiral bevel gears. This interest has been stimulated by a
desire to improve operating and maintenance procedures in high performance

transmission of helicopters and other aircraft.

Bevel gears are conical gears, having pitch surfaces in the shape of
cones. They are used to connect shafts having intersecting axes. With few
exceptions, most bevel gears may be classified as being either of the
straight tooth type or of the curved tooth type. The straight tooth gears
are called straight bevel gears. The curved tooth gears includes spiral
bevel, Zerol bevel, and hypoid gears. Hypoid gears are similar in general

form to bevel gears, but operate on axes that are offset.

Spiral Bevel gears used in practice are normally generated with
approximately conjugate tooth surfaces by using special machine and tool
settings. Therefore, a designer cannot solve the Hertz contact stress
problem and define the dynamic capacity and contact fatigue 1ife until these
settings are computed. The geometry of the gear tooth surface is very
complicated. For example, consider the space width taper and the slot width
taper. The space width taper refers to the change in the tooth space width

along the tooth length in the pitch plane. Slot width taper refers to the
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change in the slot width formed by a V-shaped cutting tool of nominal
pressure angle whose sides are tangent to the two sides of the tooth space.
The top of the tool is tangent to the root cone along the tooth length in
the root plane. The slot width taper is affected by the size of the face
mill cutter point width. The productivity of the spiral bevel gear is
significantly affected by the size of the cutter point width used to pro-
duce it. Experience has shown that a larger point width blade will have

longer life than the smaller one [8].

The determination of the principal curvatures and the principal direc-
tions of tooth surfaces necessary for calculating the Hertz contact stress
is also a difficult problem. It is believed that a quantitative under-
standing of the geometrical characteristics is fundamental to analyses of

the above mentioned physical phenomena of these gears.

The geometrical characteristics and parameters of spiral bevel gears
have been documented for some items by the American Gear Manufacturer's
Association and others [9-11]. References [12-37] present examples of
recent approaches taken to develop a broader understanding of the geometri-
cal characteristics of these gears. For example, Dyson [12] used differen-
tial geometry to develop the theory of gearing. Coy [13] described the
development of the spiral bevel gear. Bonsignore [8] studied the effect of
cutter diameter on the spiral bevel gear tooth proportions. Krenzer [14]
studied the effect of the cutter radius on the tooth contact behavior.
Litvin, et. al., [15-22] completed works dealing with the theory of spiral
bevel gears. Baxter [23-25] completed works dealing with the theory of

spiral bevel gears. Baxter [23-25] developed second order surface genera-
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tion and discussed the effect of misalignment. Baxter [26] studied the
lattice contact with the generated tooth surface. Huston and Coy [27]
studied the surface principal radii of curvature of the spiral bevel tooth
surface. Suzuki, Kondo, and Ueno [31] investigated cutting condition for
improving the cutting efficiency and the roughness of the spiral bevel
tooth surface. Huston and Coy [28] analyzed the surface characteristics of
the circular cut spiral bevel gear. They presented the analysis of tooth
profile changes in the transverse plane of circular cut, spiral bevel crown
gears [29]). They also studied the fundamental surface characteristics of
spiral bevel gears [30]. Schultes, et. al., [32] presented the CAD/CAM
techniques for spiral bevel gears. They also studied the CAD/CAM technique
on forging process [33]. Fort [34] developed the inspection system for
spiral bevel gears. Uegami, and Tamamura [35] studied the cutter profile.
Cloutier, and Gosselin [36] modeled the kinematics error effect of a gear
pair. Finally, Winter and Paul [37] measured the tooth root stress of

spiral bevel gears.

3.2 Basic Theory

The pitch element is the pitch cone which rolls without slipping at
the specified velocity ratio. The pitch element is the instantaneous axis

of relative motion of either gear with respect to the other. The two axes

and instantaneous axis all lie in the axial plane and intersect at the apex.

The base diameters of the pitch cone vary depending upon the gear ratio and
the angle between the gear cone axes and the shaft angle. The pitch angle

is the angle between the axis and the pitch element.
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Figure 3.2.1 illustrates the principal reference planes. The axial
plane contains the intersecting axes. The pitch plane is perpendicular to
the axial plane and tangent to the pitch cones. The pitch plane and the
axial plane intersect in the common pitch element. The transverse plane is

perpendicular to the axial plane and the pitch plane.

Figure 3.2.2 illustrates gear axes xj and xp intersecting at the apex
forming the shaft angle I. The pitch angles are v; and yp. The sum of the

pitch angles is the shaft angle.

The crown gear axis xc lies in the axial plane, and is perpendicular
to the pitch element. At a specified cone distance A along the pitch ele-
ment from the apex is the pitch point P. The distance from the pitch point
to the axes are the pitch radii Ry and Rp. The pitch radii are propor-
tional to the sines of the pitch angles, and their ratio is the velocity

ratio.

Formulas relating these quantities and the tooth numbers are listed in

Table 3.1.
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Y1+Y2=Z
N2 siny
W= RS OT STny
1 1

sinz

tan¥]l = ¥ cost)

tanyy = .M sinz

{1 + WcosEL)
N1 N2
Ne = siny; ~ siny,
R1 = A siny;
R = A siny,
forr = 90°
N1
tanvyy = NE—
N2
tanyy = =
2 N1
A = /(R% + Rg)
Ne = V(N% + N%)

Table 3.1 Basic Bevel Gear Relations
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3.3 Bevel Gear Manufacturing

3.3.1 Bevel Gear Generation and Nongeneration

Two types of machines using the face-mill type of cutter with multiple
blades are in general use: generating and nongenerating. The nonge-
nerating type is used for flat gears. The generating type is more univer-
sal, and can cut gears with pitch diameters up to 33 inches. The
difference between tooth profile by generation and nongeneration is
illustrated in Figure 3.3.1 [38]. In the generation operation, the cutter
contacts the tooth profile at only one point at a time. In the non-
generation process the cutter makes contact over the entire profile,

The gear member of a bevel gear pair has relatively little profile
curvature when the tooth ratio is high. In general, the gear is made by a
nongenerating roll. The gear member of a nongenerating pair is cut without
generation, and the teeth have the shape of the cutter used to cut them.
Any necessary compensation for a smooth operation is given on the tooth

profile of the mating pinion. The pinion is cut by generation.

The chief advantage of nongenerating gears over generating gears is
the economics of production. Since no generating motions are required, a
nongenerating pair can be cut several times faster than a generated gear of
the same specifications. The cutting time and the equipment used are the
same for the pinion member regardless of whether it is cut to operate with
a nongenerating or with a generating gear. The nongenerating gears,
include Helixform, Formate, Equicurve, and Coniflex gears which are the
trade mark of Gleason Works, Rochester, NY. They are cut with the conical

face mill cutter. The nongenerating machines are relatively simple com-
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pared with generating machines. Helixform and Formate pairs consist of a
nongenerated gear produced by the named method, and a pinion with teeth

generated to match.

3.3.2 The Generating Process

Generation can be called the basic process in bevel gear manufacture,
because at least one member of every pair must be generated. This is
usually the member having the lesser number of teeth, the pinion. The
theory of generation involves the following concepts [38]:

1. An imaginary rigid bevel gear called the generating gear. This may be
considered as a crown gear, a mating gear, or some other bevel gear.

2. A gear blank or workpiece upon which teeth are to be produced.

3. The positioning of a generating gear and the workpiece so that the
teeth of the generating gear are in mesh with the teeth of the work-
piece.

4. The turning of the generating gear and workpiece on their respective
axes according to a prescribed motion. The turning motion is defined
by the imaginary nonslip rolling of the pitch surfaces of the
generating gear and workpiece.

5. The envelopment of teeth of the workpiece by the teeth of the

generating gear.

In the generating process, the tool simulates one or more teeth of an
imaginary generating gear by virtue of its shape and motions. The
generating gear may be a basic rack (or crown gear), or it may be the
mating gear itself. In general, it may be any gear known to be conjugate to

the gear to be produced. The most important requirement for the generating
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gear is that it can be readily simulated by a tool with practical mechani-
cal motions. Modern gear cutting machines use straight-sided tooth cutters
to generate the gear tooth surfaces. The straight-sided tooth tool is
easier to produce and maintain than a profile form tool. Further, by the
generation motion, the same cutter can be used to generate profiles for all
tooth numbers of the same pitch. The lines of contact between the work-
piece and the tool are the same as between the workpiece and the generating
gear. The surface generated will be continuous. This type of generation

is found in hobbing, grinding, and lapping processes.

3.3.3 The Basic Generator

The production of gear teeth by the generating process requires the

following features (See [38]):

1. At least one tooth of the generating gear must be described by the
motion of the cutting tool.

2. The workpiece must be positioned relative to the cutting tool to pro-
duce meshing between the teeth of the workpiece and the teeth of the
generating gear, as they are represented by the cutter.

3. The cutting tool must be carried on a rotating machine member called a
"cradle." The axis of the cradle is identical with the axis of the
generating gear.

4. The cradle and workpiece rotate on their own axes and they, roll
together as a workpiece and imaginary generating gear.

5. A means of indexing must be provided.

Thus the rotating craé]e carrying a cutter represents a generating

gear rolling with the workpiece. The motion of the cutter simulates the
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teeth of the generating gear. As the cutter is carried about the cradle
axis, teeth are "enveloped" on the rotating workpiece. The concept of the
imaginary generating gear is the key to understanding the generating pro-
cess. Figure 3.3.2 illustrates the representation of a generating gear by
a face-mill cutter on a Gleason hypoid-gear generator [38]. Fundamental
design differences that exist among different types of gear generators have

originated because of different concepts of the imaginary generating gear.

3.3.4 Spiral Bevel Gear Cutting

Figure 3.3.3 illustrates the configuration of the basic generator of a
spiral bevel gear [38]. The cradle carries the cutter, sweeping out the
tooth surface. The gear to be cut is held by a rotatable spindle which is
part of the work head. The work head is adjustable axially so that gears
of different mounting distance can be accommodated. The work head is sup-
ported by a swinging base which is rotationally adjustable about a vertical
axis. The swinging feature of this base is requried in order to accom-
modate gears of different pitch angle. Beneath the swinging base is the
sliding base. This member is movable and adjustable in a direction
parallel to the cradle axis. Adjustment is made in the position of the
base to establish the correct depthwise relationship between the cutting
tool and the workpiece.

It can also be moved back from the cutting position to obtain
clearance for mounting and dismounting the workpiece. The sliding base is
supported by the main frame of the machine, which holds a housing sup-
porting the cradle member. Figure 3.3.4 illustrates the spiral bevel

pinion being cut on generating type machine [39].
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The sequence of the operation of a typical bevel gear generator is as
follows [38]: The sliding base moves forward to bring the work into en-
gagement with the cutter, and the generating motion of the cradle and work-
piece begins (Fig. 3.3.5 A, B). After the operation is completed on a
tooth space, the sliding base is moved back (Fig. 3.3.5 C), and the cradle
and work spindle reverse their rotation. The cradle returns to its origi-
nal position, but the work is indexed one tooth during its return roll.

The sliding base then moves forward for the start of the next cycle.

3.4 Straight Bevel Gear Tooth Surface Generation

The cutter used for the surface generation of the straight bevel gear
tooth is called "the plane basic crown rack." The plane basic crown rack
is simply a plane through the machine center. Figure 3.4.1 depicts the
machining model of the straight bevel gear tooth generation. The basic
crown rack R with the side of an inclined plane is modeled as a "rack step"
fixed on an imaginary crown gear pitch plane C. The gear blank G is a cone
with the vertex at the machine center 0. The gear blank rolls on the crown
gear pitch plane C. The crown gear pitch plane is an imaginary fixed
plane. When the gear blank rolls over the crown rack step, the envelope of

the basic crown rack is the tooth surface of the straight bevel gear.

The coordinate system describing the crown gear is S(X, Y, Z) with
origin.at 0. The coordinate system §(i, Y, 1) is fixed on the gear blank
also with origin at 0. The gear blank rotates through an angle 6 about X.
The pitch angle of the gear blank is y. The initial position of the gear

blank is defined by the angle ay which is the angle between the X axis, and
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Figure 3.3.5 Bevel Gear Generating Cycle
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Figure 3.4.1. Straight Bevel Gear Tooth Surface Generation

49




the projection of the i axis on the crown gear pitch plane, denoted by ip.
During the rolling motion, the angular position of the gear blank is
defined by the angle o . Hence, by considering the geometry of the rota-

tion the relation between o and 0 is:
a = og - Otany (3.4.1)

The coordinate system S may be obtained by coordinate transformation

from the S as follows:

Step Axis of Angle Coordinate Rotation
rotation turned system matrix
1 z a at XYZ initially R1
2 Y1 =Y X1Y171 Ro
3 Xy 6 XYZ R3

Then the rotation matrices are:

cosa -Sina 0T
(R11 = sina  cosa O
L_P 0 {J (3.4.2)
FEOSY 0 ~-siny
[Rp] = 0 1 0
siny 0 coS Y (3.4.3)
1 0 0
[R3] = 0 cos 0 =-sino0

0 sin0 cos® (3.4.4)

Let r be a position vector locating a point relative to S. Let the

components of r in S have the form:
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y4 (3.4.5)

L

Similarly, let I'g be a position vector locating a point relative to .

Let the components of g in § have the form:

1]
N> & ><>J‘

(3.4.6)

Thus r and rp as given by equations (3.4.5) and (3.4.6), are related

by expression:

r= RIRIRIr, = R (3.4.7)

[(R] may be obtained by using equations (3.4.2), (3.4.3) and (3.4.4). Let

rij (i, j =1, 3) be components. Hence, we have:

ry] = €0SacoSsY

rip = -cosasinysin® - sinacosé

ri3 = -cosasinycos0 + sinasin®

ro] = sinacosy

rop = -sinasinysin0 + cosacos®

ro3 = -sinasinycos0 - cosasin®

r3] = siny

r3p = singcosy

r3z = cos0cosy (3.4.8)
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3.4.1 The Crown Rack

The basic crown rack lies in a plane. It has a straight blade and
moves in a reciprocating radial direction. The surface of the rack forms
an inclined plane and it passes through the crown gear center. Figure
3.4.2 shows the normal view of the rack profile. Figure 3.4.3 shows the

cutter surface in the pitch plane.
The equation of the rack surface may be expressed as:
xtany -y - zcoty = 0 (3.4.9)

where ¢ is the angle between the cutter plane and the XZ plane. V¥ is
related to the "tooth angle" [4]. ¢ is the complement of pressure angle of
the cutter as shown in Figure 3.4.2. The cutter's surface may be expressed
in terms of the gear blank's system § by substituting from equations

(4.4.7) and (4.4.8) into (4.4.9). This leads to:

x[ (tanvcose - sina)cosy - cotdsiny]

+ y[sinysino(sina - tanvcosa) - cosf(cosa + tanysina)
- cot¢cosysing]
+ z[sinycos0(sina - tanycosa)-sine(cosa + tanysina)

cotécosycost]

0 =F(x, y, 2, 9) (3.4.10)

To determine the envelope of the cutter surface on the generated gear
blank, we simply compute the partial derivative in equation (4.4.10) with

respect to the parameter o (See Appendix A2.). This leads to:
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X[siny (tanysina + cosa)]
+ y[sine(l - sinytany)(coso + tanysina)

+ cose(siny - tany)(sina - tanycoso) - cotécosycosé]

+

z [coso(l - sinytany)(cosa + tanysina)

sing(siny - tany)(sina - tanycosa) + cot¢cosysiné]

0 (3.4.11)

cosa 3sina
3 and g

During the partial differentiation operation, the terms 2

are obtained by using equation (3.4.1).

3.4.2 Straight Bevel Tooth Surface Equation

Equations (3.4.10) and (3.4.11) may be rewritten as:

i
o

aix + by + c12 (3.4.12)

"
o

azi + b29 + Czi (3.4.13)

Let x be an independent variable, then, from equations (3.4.12) and

(3.4.13), y and z may be determined in terms of X. Hence, we have:

A

X

_ajby- @by

C1b,m by

_ 220 a1 (3.4.14)
N A,

where the coefficients are:

<> x>
i 1]

N>
|
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a] = (tanvcosa - sino)cosy - cotesiny
by = sinysine(sine - tamycosa) - cose(cosa + tanysina)
- cot¢cosysing
€1 = sinvcoso(sina - tanycosa) - sine(cosa + tanysina)
- cot¢cosycose
ap = siny(tan¢sina + coso)
bp = sin0(1l - sinvtany)(cosa + tanysina)
+ cos8(siny - tany)(sina - tanvcosa) - cot¢cosycos®
¢y = cos (1 - sinytany)(cose + tanysina)

- sin6(siny - tany)(sina - tanycosa) + cot¢cosysiné (3.4.15)

Equation (3.4.14), with coefficients given by equation (3.4.15),
represents the envelope of the rack relative to the gear blank. This is
the tooth surface of the straight bevel gear. Observe that since the coef-

ficients are function of 6, the tooth surface has the parametric form as:

X = X
y = y(x, ©)
z = 2(x, 0) (3.4.16)

D

where X and are the surface coordinates.
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3.5 Spiral Bevel Gear Tooth Surface Generation

3.5.1 Kinematics Relation on the Machine Setting

Figure 3.5.1 depicts a circular cutter generating a spiral bevel gear.
The cutter turns about its axis Z. with an angular rate wc. The cutter
axis Z 1is fixed in a machine element called the "cradle". The rotating
cutter forms a surface which simulates a crown gear. The cradle, and hence
the cutter (crown gear surface) also rotate. The rotating axis of the
cradle is Zl, and the rotation rate is Wy The rotation rate of the gear
blank is Wy The cutter has a straight blade. The cutting speed w. is

independent of wg and wp. It is not related to the kinematics of tooth

generation.
The relation between wg and wp is

wp/wg = Ng/Np (3-5.1)

where Ng and Np are the numbers of teeth in the crown gear and the

generated gear respectively.

The coordinate system used to describe the crown gear is Sj(X3, Yi,
Z1) with the origin at 07. The crown gear G with frame S1 fixed in G rotates

through an angle 91 about Z1 with respect to a global coordinate system
Sq(Xg, Yg» Zg) with origin at Og as in Figure 3.5.1 The System Sgq and S

have the same origin 0g and 07. The components of a vector in S; may be
expressed in terms of the components of a vector in Sg as (See Fig.

3.5.2.):

1g1Yg (3.5.2)
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Figure 3.5.1. Machine Setting for Spiral Bevel Gear Manufacturing
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where [R1g] is an orthogonal transformation matrix given by
(:cos¢1 sindy 0

(R1g] = | -sin¢y CosS$] 0

0 0 1 (3.5.3)

Let r1 be a position vector locating a point relative to 01. Let the

components of rl in S1 have the form:

7] (3.5.4)

Similarly, let rqg be a position vector locating a point relative to

Og. Let the components of rg in Sg have the form:

—
Xg
g = | Yg
Zq (3.5.5)

Then from equation (4.5.2) 5} and rqg are related by the expression:

r1 = [Riglrg (3.5.6)
Let a coordinate system Sc(Xc, Y¢, Z¢) be fixed on the cutter with the
origin at Oc(H, V, 0) in the system S;. H and V are the horizontal and
vertical machine settings. (See Fig. 3.5.2.) The cutter rotates through
an angle 0 about axfs Zc. The coordinate transformation matrix from Sp to

S¢ is through [R¢1] given by

+co0s 6 sing O—1

[(Re1] = |-sino cosé 0

0 0 1 (3.5.7)

.
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Let rc be a position vector locating a point relative to Oc. Let the

components of r¢ in Sc have the form

ch (3.5.8)

Then e and cl,givenby equations (3.5.4) and (3.5.8), are related by

the expression:

r1 = [Riclre + Tic

or

rc = Re1dr1 + [Re11T1c (3.5.9)

where [Ryc] is the transpose of [Rc1], and Tj1c is given by the expression:

—
+H
Tic = |V

0 (3.5.10)

Let a coordinate system S»(Xp, Yo, Z7) be fixed in the gear blank.
Let Sp rotate through an angle ¢ about Zp with respect to a second global
coordinate system Sp(Xp, Yp, Zp). See Figqure 3.5.1, 3.5.3 and 3.5.5.
Observe that Sp and Sp have the same origin. Also Zp coincides with Zp.
The coordinate transformation matrix from Sp to Sp is [Rpp]l given by

—
CoS¢2 -sind2

0
[sz] = | singyp +C0S¢ 2 0 |
0 0 1 J (3.5.11)

Let rp be a position vector locating a point relative to Op, the origin of

have the form:
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ZpJ (3-5-12)

Similarly, let ro be a position vector locating a point relative to 0 , the
origin of So. Let the components of ro in Sy have the form:

x2
y2

=
~o
0

Zq (3.5.13)

Then rp and rp are related by the expression:
rp = [Rp2lrp (3.5.14)

The two global coordinate systems Sg and Sp are related by the root
angle y of the generated gear and the addendum of the cutter tooth h by
transformation equation. See Figure 3.5.1, 3.5.3, and 3.5.4. Hence, Ig

and rp are related by the expression:

rg = Rgplrp + Tgp (3.5.15)
where
1 0 0
[Rgp] = 0 siny -COSYy
0 CcOoSy +siny (3.5.16)
and
) . _
Tgp=10
h (3.5.17)
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The angular speeds of the crown gear and the generated gear may be

expressed in terms of ¢1 and ¢2 as:

€
]

g =9 (3.5.18)

£
1

p = %2 (3.5.19)
where the overdot denotes the derivative with respect to time.

During the process of cutting, the simulated crown gear rotates in
such a way that the motion is conjugate to the generated gear blank. In
Figure 3.5.3, the pitch element 0oP is an instantaneous axis for these
"conjugate gears." Hence, their angular velocity components on the pitch

element should be equal, that is,
¢2sinYy = ¢1cos(¥y - ) (3.5.20)
where v, is the pitch angle.

Integrating equation (3.5.20) with respect to time, then leads to the

relation:
sinyg N
1 = sy =T Yo - %2 7 90 (3.5.21)

where ¢109 is a constant determined by initial conditions.

Let the constant w be defined as:

sinyg
W = EBET?;-:_VT (3.5.22)

Equations (3.5.20) and (3.5.21) may be rewritten as:

9
o1

wo o (3.5.23)

wha + 410 (3.5.24)
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Combining equations (3.5.1), (3.5.18), (3.5.19) and (3.5.23) gives the

relation:
N w )
R = (3.5.25)
p g 1

We can see that the magnitude of constant w is the reciprocal of the speed

ratio ¢2/¢1.

3.5.2 Circular Cutter Surface

Figure 3.5.6 depicts a cutter with a straight blade rotating about the
cutter axis Zc. The straight blade of the cutter describes a conical sur-
face of revolution with vertex angle (7 - 2y,). The mean radius of the
head cutter measured in the plane Z; = 0 is rc. The apex of the cone is at
V ith coordinate (0, 0, Zg) in Sc. The coordinates (x¢, Ye, Z¢) of an

arbitrary point C on the surface of revolution can then be obtained by the

equations:

Xc = (2g = z¢)cotyyCoSa

Yo = (2o - z Jcoty sina (3.5.26)
or

X2C + y% = (ZO - zc)zcotquo (3-5-27)

where z. and o are surface coordinates.
Equation (3.5.27) also may be written in the form
F(Xer Yor 2¢) = tanig(x + y2) - (25 - 20)2 = 0 (3.5.28)

The cutter surface may be expressed in the gear blank system S» by
substituting from equations (4.5.9), (4.5.14), (4.5.15) into equation

(4.5.6). This leads to:
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Figure 3.5.6. Surface of Revolution of the Cutter
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where [E] and

and

(E]

= [Re11(R1gI[RgpIIRp2Ir?

I}

+ Re1dlR1g) Ty + IR T

(Elro + T

T are defined as:

b= RalRygIT o+ [RIT,

where i, j =1, 2, 3.

(3.5.29)

(3.5.30)

(3.5.31)

By substituting from equations (3.5.3), (3.5.7), (3.5.10), (3.5.16)

and (3.5.17) into equations (3.5.30) and (3.5.31), the elements of [E] and

T, ejj and tj(i, j =1, 2, 3) are found to be:

and

e1l
e12
e13
ezl
e22
e23
e31

€32
€33

t1
t2
t3

1]

= cosé2cos(0 + 91) + sinysing,sin(e + o))
= -Sindpcos(®é + ¢1) + sinycosdosin(® + ¢7)
= -cosysin(6 + ¢1)

= -cos¢2sin(0 + ¢1) + sinvysinbpcos(® + ¢1)
= singpsin(0 + 1) + sinvcosdpcos(6 + ¢7)
= -cosycos(0 + ¢7)

= cosysingo

= COSY Cost 2

= siny

+Hcosy + Vsino
-Hsing + Vcoso

-h
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Hence, the cutter surface expressed in the Sy coordinate system may be
obtained by substituting equations (3.5.29), (3.5.32) and (3.5.33) into
equation (3.5.26):

e11x2 + e12y2 + e13z + t]

[z - (e31x2 + e32y, * t3)]COtwOCOSu

ep1x2 + eppyp + €23z + tp

[z - (e31x2 + e32y2 + r33z2 + t3) coty sina (3.5.34)

Alternatively, these expression may be written in the form:

(e tany  + e31c05a)x2.+(e12tanwo + e3pcosa)ys
+ (ep3tanyy + e33cosa)zp = (zg - t3z)cosa - titany,
and
(eprtanyg + e31sina)xp + (ejptanyy + e3psina)yp
+ (e13tanyg + e33sina)zy = (zg5 - t3)sina - totany, (3.5.35)

3.5.3 Spiral Bevel Gear Tooth Surface Equation

Equations (3.5.35) represent the generating surface seen by the gear
blank. To determine the envelope of the cutter surface on the gear blank,
we compute the partial derivative of Lo in equation (4.5.29), with respect

to the parameter ¢, (See Appendix A2.). That is:

ar ar
~¢c _ oE ~2 AT
ﬁ-z— [W ]!‘2 + [E]——Z + —-"—aq)z (3.5.36)

The second term is zero since rp is fixed in Sp. The first and the
Tast terms may be determined from the previous transformation equation--

specifically, from equations (3.5.30), and (3.5.32). Let the matrix [D] be

defined as:
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5E €5
[0] = [dij] = [a¢2 ] = [3¢2 ) (3.5.37)

The components of [D] may be obtained from equation (3.5.32) as:

dy; = -sing,cos(0 + ¢))(1 - wsiny) + (siny - w)cosopsin(8 + ¢1)
djp = -C059,c0s(0 + ¢;)(1 - wsiny) - (siny - w)sinspsin(e + ¢1)
d13 = -wcosycos(6 + ¢1)

dp1 = singpsin(e + ¢1)(1 - wsiny) + (siny - w)cos¢pcos(6 + ¢1)
do2 = cos¢2sin(0 + ¢1)(1 - wsiny) - (siny - w)sin¢pcos(6 + ¢1)
dp3 = -wcosysin(8 + ¢1)

d3] = COSYCO0S$2

d32 = -cosysing?

d33 =0 (3.5.38)

From equations (3.5.31) and (3.5.33), define the vector B as:

B=bi=g I=g b (i=1,2,3 (3.5.39)

8¢2
then

bj =0 (i

1, 2, 3) (3.5.40)

Hence, equation (3.5.36) may be rewritten in the form:

= rc = Ldijlr2 (i, j =1, 2, 3) (3.5.41)
¢,

Equation (3.5.41) represents the derivative of the equation of the
transformation from the cutter's system to gear blank system., It is
useful for the derivation of the constraint equation of the cutter's

motion.

The derivative of the cutter conical surface with respect to ¢, the

rotation angle of the gear blank, is (See equation (3.5.28)):
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d Bxc oy

C
Ty flxes Yos 2c) = Ztanzwo(xcgz"‘ ycﬁ'{) N
¥4
+ 2(zg - 2¢) 5—(;% =0 (3.5.42)

Substituting equation (3.5.26) into (3.5.42), this gives

ax
2tanlyyl(zq - zc)cotwocos-gél
X 2 32

+ (zg - zc)cotygsin 55?-] + 2(zg = 2¢) T 0 (3.5.43)

If zc is not equal to zg, this becomes:
y z

X
tan glcos —& + sin —E 1+ —S& =0 (3.5.44)
2

From equation (3.5.41), it is seen that

ax
2, di1x2 + d12y2 + d1322
Byc

d21xp + dpoy2 + d2322

5%, d31x2 + d32y2 + d3322 (3.5.45)

Substituting equation (3.5.45) into (3.5.44), then leads to:

tanpglcosa(diixo + dioyp + d1322)
+ sina(dp1xp + dooyp + d23z2)]
+ (d3px2 + d33z2) = 0 (3.5.46)
or
[tanyg(dijcosa + dpisina) + d313x,
+ [tanVg(dpjcosa + dopsina) + d3nlyr
+ [tanyg(dj3cosa + dp3sina) + d33]zp
- 0 (3.5.47)

Equation (3.5.47) is the constraint equation of the cutter motion on
the gear blank. Combining equations (3.5.35) and (3.5.47), then leads to

the equation
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ajixp * alzyz + a13z; = ai4
aglxz * azpy2 t+ a3z = a4
azix2 * azzy2 * 233z, = a3 (3.5.48)

where coefficients ajj(i, j =1, 3) are:

a1l = ejitanyy + ezjcosa
aly = ejptanyy + ezocosc
a13 = ej3tanygy + e33cosa
ala = (zg - t3)cosa - tltanwo
apl = e21tanyg + e3jsina
agy = ezgtanwo + e3251na
ap3 = e23tanw0 + e33sinm

asq = (zg - t3)sina

totany,

a3] = tanyg(dijcosa + dpysina) + d31
a3y = tanyg(dyipcose + dopsina) + d3p
a3z = tanyg(dy3cosa + dp3sina) + d33

azq =0

Equation (3.5.48) with coefficients from equation (3.5.49) forms a set
of simultaneous equations representing the envelope of the cutter relative
to the gear blank. The solution of equation (3.5.41) describes the tooth
surface impression created by the cutter. Observe that since the coef-
ficients ajj are functions of (o, ¥1), the solution of equation (3.5.48)

has the parametric form:

xp = x2(a, 41)
yo = ya2(a, ¢1)
22 = z5{(v, ¢) (3.5.50)

/1




where « and ¢1 are the surface coordinates.
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Chapter 4

Conclusions and Applications

A new modeling method simulating the gear manufacturing process has
been presented. The method is applicable with hobbing and shaping proce-

dures. It can be used with both spur and bevel gears.

The model simulates the kinematics of the gear cutter. The cutter
profile is described in terms of the gear blank coordinate system.
Applying a one parameter envelope theory, with the rotation angle of the
gear blank being the parameter, the envelope of the cutter profile on the
gear blank describes the gear tooth profile. The partial derivative of the
cutter equation with respect to the rotation angie, determines the
constraint equation of the cutter motion. The simultaneous solution of the
cutter equation and cutter constraint equation provides the cutter envelope
which is the gear tooth profile. These are equations (2.3.6), (2.4.4) and
(2.4.5) of Chapter 2 for standard and nonstandard gear tooth profiles, and
equation (3.4.16) of Chapter 3 for straight bevel gear tooth surfaces, and
equation (3.5.50) of Chapter 3 for spiral bevel gear tooth surfaces. The
gear shaping simulation is modeling in Section 2.5. The cutter takes the
rack form on a wheel. The shaped gear tooth profile is expressed in equa-

tion (2.5.7).

There are many applications of the foregoing analysis. It may be used
to study straight and spiral bevel gear tooth surface characteristics. The

effects of the machine settings, the cutter radius, the mean cone distance,
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tooth space width taper, and slot width taper [8] can also be examined.
Also, the surface equations of the bevel gear tooth may be accurately digi-
tized for a finite element mesh generation. Finally, the static and dyna-

mic analysis of these gears may be studied.

Future efforts should include extending these procedures to study
gears with non-intersecting shafts--that is, hypoid gears. Also, software
to automatically generate these gear tooth surfaces needs to be developed.
The effect of surface characteristics on the stresses, performance, and
life needs to be examined. Finally, the use of these procedures for opti-

mal design needs to be developed.
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Appendix Al. The Envelope of a Family of Curves

In the xy plane, let

F(x, y, t) =0

be the equation of a family of curves. Let E be a curve in the plane

(A1)

tangent to each curve of the family. Let t be a parameter for the envelope

and let
x = x(t), and y = y(t)

Since these relations make equation (Al) an identity, we have

aF dx , oF dy , oF _

ax dt = 3y dt = 9t 0

On any given curve, t is constant. Hence, we have the equation

oF , 3F dy _
X dy dx

This determines the slope of E at any point. Hence
dy _ dy/dt
Tﬁ% dx/dt

oF dx | oF dy
ax dt dy dt

and

o

A comparison of equations (A3) and (A5) shows that:

oF
=5t -0

(A2)

(A3)

(A8)

(A5)

(A6)

This forms an algorithm for finding the parametric equations of the

envelope. That is, we simply solve equations (Al) and (A6) for x and y in

terms of t. See Reference [3] for additional details.
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Appendix A2. Developable Surfaces

In general, a surface has a different tangent plane at each point.
Hence, the surface may be regarded as the envelope of a two-parameter
family of planes. A surface which, has only a one-parameter family of

tangent planes is known as a "developable" surface.

Let the equation of the family be

F(x1, X2, x3 ) =0 (A7)

where t is the parameter.

Let S be a surface of the family and let it be intersected by a neigh-
boring surface. If S and S' correspond to the values t and t + At of the
parameter, the intersection curve is represented by the simultaneous

equations

F(x1, X9, x3, t) =0 (A8)

and

n
o

F(x1, x2, x3, t + at)
It may also be represented by the equations
F(x1, x2, x3, t) =0

F(x1, x2, x3, t +at) - F(x1, xp, x3, t) (A9)
At

The surface (F(x1, xp, x3, t + 4at) - F(xq, X2, X3, t))/At = 0 goes
through the curve common to the two surfaces F(x1, X2, x3, t) = 0 and F(xp,

X2, X3, t + At) =0. When S' approaches S as a limit (that is, when At
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approaches zero) the intersection curve will, approach a limits curve C.

This curve has the representations given by:
F(x1, Xps X3» t) =0
F1(x1, x2, x3, t) =0 (A10)

When the parameter t varies, the curve C will vary and generate a sur-

face. This surface is the "envelope" of the given family.

Equation (Al0), when t is fixed, represents a curve on the surface of
the family. The same equations, with t variable, represent the envelope.
The result of eliminating t from them is the equation of the envelope. See
Reference [3] for additional details.
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